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de Finetti Representations of Survival
Functions Level to a Product Measure

Roger M. Cooke *

June 18, 1992

Abstract

de Finetti-type representations of survival functions are consid-
ered. Exchangeable continuous strictly monotonic infinite-dimensional
survival functions whose finite dimensional maxginals have the same
level sets as a product survival function, can be represented uniquely
as mixtures of positive powers of that product survival function. A
functional equation characterizes the survival functions which can be
represented in this way, and the product measure is extracted using
techniques from functional equations.

Key Words: 4p isotropic measures, de Finetti theorem, Schr6der equation,

bisymmetry.

1 Introduction

Two functions, , and g on R', with n > 2 are called level (f - g) if they
have the same level sets, that is, f(x) = f (y) if and only if g(x) = g(y). This

*This research was partially supported by a grant to the University of California at
Berkeley by the Army Research Office, and was preformed while the author was a visiting
research associate at the Department of Industrial Engineering and Operations Research,
University of California at Berkeley, on sabbatical leave from the Department of Math-
ematics and Informatics, Delft University of Technology, The Netherlands. The idea of
looking at the de Finetti theorem for survival functions was suggested and motivated by
Richard Barlow. Helpful comments were provided by Jolanta Misiewicz, Yu Hayakawa
and Max Mendel.



concept is meaningful for measures only if the measures are represented as in-
tegrals of density functions. It is convenient to study survival functions, that
is functions of the form P(x) = Prob{X > x} = Prob{X > x,'-- X, > x,}
for a random vector X E R+. We shall be concerned with continuous sur-
vival functions which are strictly monotone in each argument. For univariate
survival functions this entails that an inverse exists; for n-dimensional mul-
tivariate survival functions, it entails that the level sets are simple n - 1
dimensional hypersurfaces intersecting all the coordinate axes. Each point
of the support is on exactly one such hypersurface.

This paper studies de Finetti-type representations of continuous strictly
monotone survival functions which are level to a product measure. Let R+
denote the positive reals, and R+ the non-negative reals. If P: R-- -- [0, 1]
is a survival function and x E f_, then P(x) denotes the n-dimensional
marginal P(xl,. . ., x n, 0, 0,.. .), and when the context would be ambiguous,
Fn will denote the n-dimensional marginal. P - I- p means that all finite-
dimensional marginals of the two functions P and H' p are level. Recall
that according to the de Finetti theorem, any exchangeable survival function
F; ' -- [0, 1] can be written as

Vx E R"; F(x) = j (x)dp (1)
IME, i=1

where M is the set of survival measures on [0, oo). The measure Ap is unique.
In some cases the integral can be expressed as an integral over the range of
some real parameter. For example, if we require that the density f of P is
4P- isotropic, that is, has level sets corresponding to the 4p norm, then the
k-dimensional marginal density fk can be uniquely written as ([4], [9], [11])

fk(Z4 Eje P[-Z [ Pt 1  kAp(dt). (2)

Comparing the above two representations, two differences are apparent:
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(i) in the second equation the integral runs over values of a "scale parameter"
t, and, (ii) the product measures over which the measure Ap. mixes are level
to the density on the left hand side. These two facts are equivalent for
continuous monotone survival functions, in fact:

Theorem 1 Let F : R' - [0, 11 be a continuous strictly monotone sur-
vival function and p be a continuous strictly monotone univariate survival
function, then the following are equivalent:

P~-H P (3)

Vn E N, Vx E R+n J ~
VnE ,x ; F(x) = jO J1 p(xj)'Ap(ds) (4)

It is trivial that (3) follows from (4). l,-isotropic survival functions have
li-isotropic densities, and converseley (this is not true for lp densities with
p 5 1) [6]. The reverse implication then follows from (2) upon making the
substitution z(x) = - ln(p(x)). The family of survival functions e- ', s E
(0, oo) are said to have proportional hazard functions.

There are advantages to looking at the problem from the viewpoint of
Theorem 1 In particular it suggests techniques of functional eqations for
finding equivalent conditions for (3), and for finding z when thesc conditions
are satisfied. For exchangeable F, equivalent conditions in terms of a bisym-
metry condition on the two-dimensional marginals of P are -erived in Section
2. If X is exponentially distributed and f(.) is non-negative, continuous and
increasing with f(0) = 0, then Mendel and Barlow [10] call the distribution
of f(X) "generalized Weibull". Section 2 shows how to recognize mixtures of
generalized Weibulls from their 2-dimensional m arginals, and how to extract
the transformation f = - In(p). This is applied in Section 3 to obtain a rep-
resentation of 4P isotropic survival functions. Section 4 gives two functional
equations for survival functions. The last of these could be derived from (2),
but a direct proof using techniques of functional equations, enables us to give

a short proof of Theorem 1 in the last Section.
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2 Equivalent conditions for F H i y

Throughout this section we assume that F is a strictly monotonic exchange-
able survival function on R7 and that p is a continuous strictly monotonic
univariate survival function. The first theorem collects some obvious prop-
erties, the second shows that it suffices to look at 2-dimensional marginals,
and the third gives a functional equation which represents all P which are
level to a product.

Theorem 2 (1) If P - r pi and p(x) = F(x) (i.e. p is the 1-dimensional
marginal of F), then F = F p.
(2) If F - rj p then

F(X7 +iIx1,... xn) = F(x,+llyi,-.. y,) * P(xi,. -xn) = F(y,.- - y,)
(5)

Proof: Immediate.

Theorem 3 Suppose for all x,X' E R2+: F2(x) = P2(x') if and only if

P(xI)p(x2 ) = p(X')P(X2); then P lip.

Proof: Put zi(xi) = - ln(p(xi)) and F(z,... ,z1n) = F(x,... xn)

Lemma: A function H: R' --+ R which is invariant under finite permuta-
tions and 11 isotropic in the first two coordinates, is 11 isotropic.

n-1

Proof of lemma: We must show for anyxl,... xj,, H(xl,. .. x ) = H il ,O.

n-1 n-2

H( x,077, = H(x,Z,OE x ,O) =

i=1 i=2

n-3 n-3
071

H(O, xi,x,,,O ) = H( =, 1
i=2 i=3



•... H (zx ... ,.xi) = H (xi,'"- , x.).C1

By the hypothesis of the theorem, if z, + z2 = z' + z2, then F(zi, z2) =

F(z', z2), i.e. F is l isotropic in the first two coordinates. The lemma entails
that F is l isotropic, hence for x, x' E R, z(x) = (ln M(xi),-.. In (X,));

we have: F(x) = F(x') 4* P(z) = F(z') "*E'= zi = E!', z' 4 r 1'= ji(x,)
fI=/ I(x ). It follows that PF ,- I.0

For the next theorem we define G : R2+ R+ as:

G(x,y) = z if F(z,z) - P(x,y).

G is called bisymmetric if

G(G(x, y), G(z, w)) = G(G(x, z), G(y, w)).

The problem of identifying those survival functions which are level to a prod-
uct is essentially a matter of representing bisymmetric forms.

Theorem 4 P is level to a product if and only if G is bisymmetric.

Proof: By Theorem 3 it suffices to find a univariate survival function p such
that for all x, x', y, y' E R+;

p(x)p(y) = p(x')p(y') if and only if F(x,y) = F(x',y').

The function G is reflexive and symmetric. There exists a continuous strictly
monotonic function k : i+ --- R such that

G(x,y) = k- k(x) + k(y)) x,y E +. (6)
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Moreover, k is uniquely determined up to an affine transformation [2, p.287,

p 246]. Arranging that k(O) = 0,k(x) 0, put M(x) = e- (z), then

p(a(x, y))'= p(x)p(y).

If F(x, y) = F(x', y'), then G(x, y) = G(x', y') and pi(x)pi(y) = 4u(x)p(y). 0

From the proof of [2, p.87], one can construct the function k and hence
p. However, if the conditions of Theorem 4 hold it is easier to recover p in a

different way. Let F1 denote the one-dimensional marginal of F, and define

k

gk(X)=

Then p(x)k = P(gk(x))), or more generally,

p(x) " = pI(g.'(gk(x))), k,n E N. (7)

Hence, if we assign p(x0 ) = r, for some 0 < r < 1, then (7) determines p- 1

on a dense set. Since p is continuous, p is determined on a dcnse set as well.

In specific situations more elegant methods may be available, as illustrated
in the next section.

3 Applications to linear, inverse linear and
1-p isotropic survival functions

For a uniquely defincd continuous function g : R+ --4+ we may write
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F(g(x),g(x)) = F(0,x) (8)

If F -,,l p, then by Theorem I p also satisfies (8), or

log(p(g(x)) = I log(p(x)) (9)

Equation (9) is an example of the Schr6der equation, and has been studied
extensively [8]. Existence and uniqueness theorems are available for certain
g, as illustrated by ([8, pp 68,69], [7]):

Theorem 5 Let g be continuous and strictly increasing on D = [0, a], 0 <
a < oo; such that (i) 0 < g(x) < x in D\{0}, (ii) x -+ g(x)/x is monotonic
in D\{0}, and (iii) lim .o[g(x)/x] = s, where 0 < s < 1. Then 4(g(x)) =
sO(x) has a unique one parameter family of solutions 0 : D --+ R given
by O(x) = clim,_ .. 9 - The function x -- is monotonic in D\{0}.g"(-To)"
where c E R is any constant and xo is an arbitrary fixed point in D\{0}.

This result can be applied to represent survival functions level to infinite
products of linear (1- x; 0 < x < 1) and inverse linear ( 1 ; 0 < x, oo)
survival functions respectively. These correspond to uniform and quadratic
densities.

Theorem 6 Let F: D' -- [0, 11 be a continuous monotone exchangeable
survival function and suppose that F [- H it.

(i) If D = [0, 1)' and F(1 - (1 - x)1/ 2, 1 - (1 - x) 112) = F(O, x), then
P(x) = 1 - x.

(ii) If D = [0, oo) and PF((1 + X)1/2 - 1, (1 + x)1/2 - 1) = P(O, x), thenpt(x) =.

Proof: We do only (ii) as (i) is similar. The function g(x) = (1 + x)11 2 - 1

in (9) is easily verified to satisfy conditions (i) and (ii) of Theorem 5, and
with L'Hospital's rule lim-.0 2-Uz = lim..o dz) = 1/2. It follows that a

'T dX
solution exists and is unique up to a constant. p(x) = is a solution and
is therefore the only solution in the class of univariate survival functions. C1
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Results like Theorem 5 place restrictions on g which are not satisfied for
general polynomial and inverse polynomial survival functions. A charac-
terization of survival functions level to products of polynomial and inverse
polynomial survival functions is not known. lp isotropic survival functions
violate condition (iii). A representation for lp isotropic survival functions is
given in:

Theorem 7 Let F: [0, oo)' --- [0,11 be a continuous monotone exchange-
able survival function and suppose that the two-dimensional marginal of
satisfies

Vt E R+, F(t,0) = F(2c(t/2,t/2)); (10)

for some constant c (in fact c < 1 since F is a survival function), and

S, H-IP; (11)

for some continuous monotone univariate survival function p; then F is lp-
isotropic with p = -log 2 (c).

Proof: By Theorem 1

F0 H j17!LdAF(s)

It suffices to show that p(t) K - t" for some constant K, and that p =

- log2 (c). (10) and (11) entail that p(t) = p(ct)2 . After k iterations of the
substitution t --+ ct , this becomes:

I(t) = P(ckt)2;

Put t = c; then ps must satisfy the functional equation:

i= P(ck+)2k

8



or
U(x) = k+U(k+x) (12)

with U(x) = log 2 In p(cz). As U is continuous, the solutions 1 have the form

U(x) = -x + constant

so that
p(cz) = e (13)

for some constant K.
By theorem 9, all p satisfying (11) are powers of a given solution, so we

may choose K = 1. Substitute

x := log,(t) log 2(t)
log2 (c)

in (13): then in (13) -1

2-= t o 2 M

It remains to show that p = -log 2(c). For an Ip -symmetric measure satis-
fying (11):

t = jj2c(t/2,t/2)ip = cII(t,t)jp = 2 tc

which is equivalent to
c=2-P . 0:

1This is an instance of Pexider's equation f(x + y) = g(x) + h(y); having the general
solution f(t) = 0(t) + a + b, g(t) = 0(t) + a, h(t) = 0(t) + b; where a and b are arbitrary
constants, and 0 solves O(x + y) = O(x) + 0(y). [1, p. 142]

9



4 Functional equations for survival functions

Saying that two survival distributions are level entails functional equations
from which the following two theorems draw conclusions. If a function f is
continuous on (0, 1) and satisfies f(xy) = f(x)f(y), then f(x) = xq for some
constant q. ([1, p. 41]). For Theorems 9,10 the following simple fact will
suffice:

Theorem 8 Let f be a positive function defined on an interval I C R+, such
for all s,y, with y,y- E I, f(yS) = f(y)3; then f(y) = yq, for some q.

Proof: Pick Yo E I, yo $ 1, and put q = log,0 f(yo). Then f(yo) Y. Put
y= y() for y E I. Then f(y) = f(y (y)) = f(yo)r( y ) = Yqr(y) = yq. .

Theorem 9 Let F and G be continuous monotone univariate survival func-
tions, and suppose for some integer n > 2,

n nl

flF~H (14)

then for some non-negative real number s;

Vx E Rn F(x) = O(x),. (15)

Proof: Restricting to arguments of the type ('XlX 2,A0,0.) it suffices to
prove the result for n = 2. We have

F(x1 )F(x 2) = F(t) #=* G(x1 )G(x2 ) = G(t).

Put
F(x) = I(G(X)),

10



which is possible because G is invertible. We have

HG(x,)HG(x2) = HG(t) = H(G(x1 )G(x 2 )). (16)

This holds for all G(xi), G(x 2) E (0, 1). With the multiplicative Cauchy
equation [1, p. 41] we conclude for some s E.

F(x) = F(a(x)) = O(x)9.

Since 0 < F(x), O(x) < 1, we must have 0 < s.0

Theorem 10 For univariate survival functions Fi and G; with ai > 0, i =

1,...m, , ai = 1; suppose

E aij P,~H (17)
i=1

where Zi=1 ai I- Fi, and G are continuous and strictly monotone. Then

Fi = 08 (18)

Proof: The derivatives of Fi exist, though Fi are not assumed to be strictly
monotone (this follows from the theorem). G- ' exists because of strict mo-
tonicity. Put .X, = FFG- . F, are defined on (0, 1], and are continuous
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(G-(0) might be defined, but in light of continuity, there is no loss of gen-
erality in restricting attention to (0, 1].). Letting m! denote the set of per-
mutations of {1,--. m}, define:

d = min{inf{xIF-1 (1)(y) > T(2)(Y) > "T(,)(y);VY E (x, 1)}} (19)
IrEm!

D = (d, 11 (20)

We note that d < 1 since the (one-sided) derivatives of .F exist at 1. Also, if
d > 0, and if S is the subset of indices for which Y(d) = Tj (d), then

there exist y E D and ij E S such that Ti(y) 0 ..T'(y) (21)

We may assume without loss of generality that

.77(y) >__ "2(y) >_... TFn(y); Y E D. (22)

n q n-q

Suppose (1H 0)(T X) = ([I G)(t, .'t,0, then ) = G(t)q. We

have from (17)

G(X)n = (t)9

=> (23)

m m

i=l i=1

12



Write x = ( -(y); t = 0-'(v), and (23) is equivalent to:

y n __ V q

m M
OT (Y)

n  E- a Oi.Fi(V)
q

=i=1 2=1

Substitute v = yn/q. To study the limit behavior as n -+ oo we restrict the
arguments to D: For all y, n, q such that y, yn/q E D:

[f . I(y ) n = o ,. (yn/ )q] (24)

i==1

We let n, q --+ oo, such that n/q ---+ k with yk E D. The left hand side of (24)
converges to -F1 (y), for all y, yk E D, because of (22). On the right hand side

[ F1 Yi(yn/q) q  = 1/n [.F'(yn/q)ql'l/ n 1 + ae .Ti(y'/q)q]I/"

• -Tl(yk)ll k.  (25)

Comparing (24) and (25) we see that for y, yE E D; T, (yk) = .F,(y)k. This
means that Theorem 8 can be applied to yield; Vy E D : 71(y) = ysl; or:

Vx such that O(x) E D : PFl(x) = O(x)'. (26)

13



for some si, which must be positive since Fi ranges over (0, 11. We now
substitute (26) into (24). For y, y"/q E D we can eliminate the term in -F,
and conclude:

m m

EaY(y)' = a (27)
i=2 i=2

From this we derive, as above

Vx such that G(x) E D: F 2(x) = G(x)2. (28)

Proceeding in this way we show for i = 1,..- m

Vx such that O(x) E D: Pi(x) = G(x)-i. (29)

We show that d = 0. Suppose to the contrary that d > 0. Then for
those ij such that JT(d) = _Fj(d), we have by continuity: i(d) = d"' and
Y3i(dj) = d',. This entails that si = sj; and that Fi (y) = Fj (y) for all y E D.
This however contradicts (21). It follows that D is (0, 11, and the theorem is
proved. 0

In Theorem 10 all finite dimensional marginals are level, whereas in The-
orem 9, the n-dimensional product measures are level, for a fixed n. It is
not known whether the analogue of Theorem 9 holds for mixtures of product
measures.

5 A de Finetti theorem

We recall briefly some facts about the topology of weak convergence. Let
S be a metric space, and let B(S) be the Borel field over S generated by
the metric. The set Z(S, B(S)) of probability measures on (S, B(S)) may

14



be endowed with the topology of weak convergence. For A E Z(S, B(S)), a
basis neighborhood of A may be written as:

N(A) = {71rl7(F,) < A(F) + ; > 0, F E B(S) closed; i = 1 ...k} (30)

Convergence in this topology is equivalent to weak convergence, denoted by
-,. Moreover, the set of A E Z(S, B(S)) with finite support is dense in this

topology on Z(S, B(S)) . Let M = {pijp is a univariate survival function}.
M is a metric space with the Prohorov metric, and may be endowed with
the topology of weak convergence ([5, p. 236 - 238]). Define:

A = the set of probabilities on (M, B(M)).

Let .* E M; define

A* = {A E AIJ fl ItdAII*} (31)

A; = {A E A*IA has finite support} (32)

Let ft* E M; define If A E A; then A = '=j ai1,, where 1 denotes the
indicator function. We can now prove

Theoreml:. Let P: [0, oo)c --* [0, 1] be a continuous monotone symmetric
survival function and suppose that

' "-IP* (33)

15



for some continuous monotone univariate survival function i *. Then Ap in
(1) is concentrated on {p"Is E (0, oo)}.

Proof: Take A* as above, with tt continuous monotone. Let M = {z sjs E
(0, oo)}. We show that Ap(M) = 1 if Ap E A*. Pick Ai ---+,, Ap ; Ai E A;, i =
1,2... ; then Ai(M) = 1 by Theorem 10. Let ft denote the closure of M in
(A*, B(A5 )). We show:

t = {i*'1s E (0, oo1}

where ptt is unit mass at zero. Suppose tl*"(x) - r,i --+ oo. We show
that 77e { *Sjs E (0,oo]}. Consider two cases: (1) for all k E N there are
finitely many i with si E [0, k] and (2) there exists a k E N such that for
infinitely many i, si E [0, k]. In case (1) we have that pii'(x) converges to
unit mass at the origin.

In case (2) pick a subsequence si, such that s,, -+ r, r E [0, k]. For all
x [0, 00)

It follows that p"j --+ *'; as j -f c, and hence that * -- jg" , since
pLi converges weakly.

Now Ai(M) = 1 so that Ap(M) = 1, by (30). Moreover, Ap cannot assign
positive mass to p*', as AF is continuous monotone by assumption.O
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